* * * * * * * * * * * * * * * * * * * * * * * *
LINGUIST List logo Eastern Michigan University Wayne State University *
* People & Organizations * Jobs * Calls & Conferences * Publications * Language Resources * Text & Computer Tools * Teaching & Learning * Mailing Lists * Search *
* *
LINGUIST List 18.2637

Mon Sep 10 2007

Diss: Computational Ling: Conway: 'Approaches to Automatic Biograph...'

Editor for this issue: Hunter Lockwood <hunterlinguistlist.org>


To post to LINGUIST, use our convenient web form at http://linguistlist.org/LL/posttolinguist.html.
Directory
        1.    Mike Conway, Approaches to Automatic Biographical Sentence Classification: An empirical study


Message 1: Approaches to Automatic Biographical Sentence Classification: An empirical study
Date: 09-Sep-2007
From: Mike Conway <mikenii.ac.jp>
Subject: Approaches to Automatic Biographical Sentence Classification: An empirical study
E-mail this message to a friend

Institution: University of Sheffield
Program: Department of Computer Science
Dissertation Status: Completed
Degree Date: 2007

Author: Mike Conway

Dissertation Title: Approaches to Automatic Biographical Sentence Classification: An empirical study

Linguistic Field(s): Computational Linguistics

Dissertation Director:
Robert Gaizauskas

Dissertation Abstract:

This thesis addresses the problem of the reliable identification of
biographical sentences, an important subtask in several natural language
processing application areas (for example, biographical multiple document
summarisation, biographical information extraction, and so on). The
biographical sentence classification task is placed within the framework of
genre classification, rather than traditional topic based text classification.

Before exploring methods for doing this task computationally, we need to
establish whether, and with what degree of success, humans can identify
biographical sentences without the aid of discourse or document structure.
To this end, a biographical annotation scheme and corpus was developed, and
assessed using a human study. The human study showed that participants were
able to identify biographical sentences with a good level of agreement.

The main body of the thesis presents a series of experiments designed to
find the best sentence representations for the automatic identification of
biographical sentences from a range of alternatives. In contrast to
previous work, which has centred on the use of single terms (that is,
unigrams) for biographical sentence representations, the current work
derives unigram, bigram and trigram features from a large corpus of
biographical text (including the British Dictionary of National Biography).
In addition to the use of corpus derived n-grams, a novel characteristic of
the current approach is the use of biographically relevant syntactic
features, identified both intuitively and through empirical methods.

The experimental work shows that a combination of n-gram features derived
from the Dictionary of National Biography and biographically orientated
syntactic features yield a performance that surpasses that gained using
n-gram features alone. Additionally, in accordance with the view of
biographical sentence classification as a genre classification task,
stylistic features (for example, topic neutral function words) are shown to
be important for recognising biographical sentences.





Read more issues|LINGUIST home page|Top of issue




Please report any bad links or misclassified data

LINGUIST Homepage | Read LINGUIST | Contact us

NSF Logo

While the LINGUIST List makes every effort to ensure the linguistic relevance of sites listed
on its pages, it cannot vouch for their contents.