Featured Linguist!

Jost Gippert: Our Featured Linguist!

"Buenos dias", "buenas noches" -- this was the first words in a foreign language I heard in my life, as a three-year old boy growing up in developing post-war Western Germany, where the first gastarbeiters had arrived from Spain. Fascinated by the strange sounds, I tried to get to know some more languages, the only opportunity being TV courses of English and French -- there was no foreign language education for pre-teen school children in Germany yet in those days. Read more



Donate Now | Visit the Fund Drive Homepage

Amount Raised:

$34413

Still Needed:

$40587

Can anyone overtake Syntax in the Subfield Challenge ?

Grad School Challenge Leader: University of Washington


Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

What is English? And Why Should We Care?

By: Tim William Machan

To find some answers Tim Machan explores the language's present and past, and looks ahead to its futures among the one and a half billion people who speak it. His search is fascinating and important, for definitions of English have influenced education and law in many countries and helped shape the identities of those who live in them.


New from Cambridge University Press!

ad

Medical Writing in Early Modern English

Edited by Irma Taavitsainen and Paivi Pahta

This volume provides a new perspective on the evolution of the special language of medicine, based on the electronic corpus of Early Modern English Medical Texts, containing over two million words of medical writing from 1500 to 1700.


Academic Paper


Title: Using automatically labelled examples to classify rhetorical relations: an assessment
Author: Caroline Sporleder
Institution: Universiteit van Tilburg
Author: Alex Lascarides
Homepage: http://www.cogsci.ed.ac.uk/~alex/
Institution: University of Edinburgh
Linguistic Field: Computational Linguistics; Discourse Analysis
Abstract: Being able to identify which rhetorical relations (e.g., contrast or explanation) hold between spans of text is important for many natural language processing applications. Using machine learning to obtain a classifier which can distinguish between different relations typically depends on the availability of manually labelled training data, which is very time-consuming to create. However, rhetorical relations are sometimes lexically marked, i.e., signalled by discourse markers (e.g., because, but, consequently etc.), and it has been suggested (Marcu and Echihabi, 2002) that the presence of these cues in some examples can be exploited to label them automatically with the corresponding relation. The discourse markers are then removed and the automatically labelled data are used to train a classifier to determine relations even when no discourse marker is present (based on other linguistic cues such as word co-occurrences). In this paper, we investigate empirically how feasible this approach is. In particular, we test whether automatically labelled, lexically marked examples are really suitable training material for classifiers that are then applied to unmarked examples. Our results suggest that training on this type of data may not be such a good strategy, as models trained in this way do not seem to generalise very well to unmarked data. Furthermore, we found some evidence that this behaviour is largely independent of the classifiers used and seems to lie in the data itself (e.g., marked and unmarked examples may be too dissimilar linguistically and removing unambiguous markers in the automatic labelling process may lead to a meaning shift in the examples).

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 14, Issue 3, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page