Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Language Planning as a Sociolinguistic Experiment

By: Ernst Jahr

Provides richly detailed insight into the uniqueness of the Norwegian language development. Marks the 200th anniversary of the birth of the Norwegian nation following centuries of Danish rule


New from Cambridge University Press!

ad

Acquiring Phonology: A Cross-Generational Case-Study

By Neil Smith

The study also highlights the constructs of current linguistic theory, arguing for distinctive features and the notion 'onset' and against some of the claims of Optimality Theory and Usage-based accounts.


New from Brill!

ad

Language Production and Interpretation: Linguistics meets Cognition

By Henk Zeevat

The importance of Henk Zeevat's new monograph cannot be overstated. [...] I recommend it to anyone who combines interests in language, logic, and computation [...]. David Beaver, University of Texas at Austin


Academic Paper


Title: 'Recognizing entailment in intelligent tutoring systems'
Author: RodneyD.Nielsen
Email: click here to access email
Institution: 'Boulder Language Technologies'
Author: WayneWard
Institution: 'Boulder Language Technologies'
Author: JamesHMartin
Institution: 'University of Colorado'
Linguistic Field: 'Computational Linguistics; Pragmatics'
Abstract: This paper describes a new method for recognizing whether a student's response to an automated tutor's question entails that they understand the concepts being taught. We demonstrate the need for a finer-grained analysis of answers than is supported by current tutoring systems or entailment databases and describe a new representation for reference answers that addresses these issues, breaking them into detailed facets and annotating their entailment relationships to the student's answer more precisely. Human annotation at this detailed level still results in substantial interannotator agreement (86.2%), with a kappa statistic of 0.728. We also present our current efforts to automatically assess student answers, which involves training machine learning classifiers on features extracted from dependency parses of the reference answer and student's response and features derived from domain-independent lexical statistics. Our system's performance, as high as 75.5% accuracy within domain and 68.8% out of domain, is very encouraging and confirms the approach is feasible. Another significant contribution of this work is that it represents a significant step in the direction of providing domain-independent semantic assessment of answers. No prior work in the area of tutoring or educational assessment has attempted to build such domain-independent systems. They have virtually all required hundreds of examples of learner answers for each new question in order to train aspects of their systems or to hand-craft information extraction templates.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 15, Issue 4, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page