Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Language Planning as a Sociolinguistic Experiment

By: Ernst Jahr

Provides richly detailed insight into the uniqueness of the Norwegian language development. Marks the 200th anniversary of the birth of the Norwegian nation following centuries of Danish rule


New from Cambridge University Press!

ad

Acquiring Phonology: A Cross-Generational Case-Study

By Neil Smith

The study also highlights the constructs of current linguistic theory, arguing for distinctive features and the notion 'onset' and against some of the claims of Optimality Theory and Usage-based accounts.


New from Brill!

ad

Language Production and Interpretation: Linguistics meets Cognition

By Henk Zeevat

The importance of Henk Zeevat's new monograph cannot be overstated. [...] I recommend it to anyone who combines interests in language, logic, and computation [...]. David Beaver, University of Texas at Austin


Academic Paper


Title: 'Inductive probabilistic taxonomy learning using singular value decomposition'
Author: FrancescaFallucchi
Institution: 'Università degli Studi di Roma Tor Vergata'
Author: FabioMassimoZanzotto
Institution: 'University of Rome, La Sapienza'
Linguistic Field: 'Computational Linguistics'
Abstract: Capturing word meaning is one of the challenges of natural language processing (NLP). Formal models of meaning, such as networks of words or concepts, are knowledge repositories used in a variety of applications. To be effectively used, these networks have to be large or, at least, adapted to specific domains. Learning word meaning from texts is then an active area of research. Lexico-syntactic pattern methods are one of the possible solutions. Yet, these models do not use structural properties of target semantic relations, e.g. transitivity, during learning. In this paper, we propose a novel lexico-syntactic pattern probabilistic method for learning taxonomies that explicitly models transitivity and naturally exploits vector space model techniques for reducing space dimensions. We define two probabilistic models: the direct probabilistic model and the induced probabilistic model. The first is directly estimated on observations over text collections. The second uses transitivity on the direct probabilistic model to induce probabilities of derived events. Within our probabilistic model, we also propose a novel way of using singular value decomposition as unsupervised method for feature selection in estimating direct probabilities. We empirically show that the induced probabilistic taxonomy learning model outperforms state-of-the-art probabilistic models and our unsupervised feature selection method improves performance.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 17, Issue 1, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page