Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Words in Time and Place: Exploring Language Through the Historical Thesaurus of the Oxford English Dictionary

By David Crystal

Offers a unique view of the English language and its development, and includes witty commentary and anecdotes along the way.


New from Cambridge University Press!

ad

Thesaurus of English Words and Phrases

By Peter Mark Roget

This book "supplies a vocabulary of English words and idiomatic phrases 'arranged … according to the ideas which they express'. The thesaurus, continually expanded and updated, has always remained in print, but this reissued first edition shows the impressive breadth of Roget's own knowledge and interests."


New from Brill!

ad

The Brill Dictionary of Ancient Greek

By Franco Montanari

Coming soon: The Brill Dictionary of Ancient Greek by Franco Montanari is the most comprehensive dictionary for Ancient Greek to English for the 21st Century. Order your copy now!


Academic Paper


Title: Dependency-based n-gram models for general purpose sentence realisation
Author: Yuqing Guo
Institution: Toshiba (China) Research and Development Center
Author: Haifeng Wang
Institution: Baidu
Author: Josef Van Genabith
Email: click here to access email
Institution: Dublin City University
Linguistic Field: Computational Linguistics; Semantics; Syntax
Subject Language: Chinese, Mandarin
English
Abstract: This paper presents a general-purpose, wide-coverage, probabilistic sentence generator based on dependency n-gram models. This is particularly interesting as many semantic or abstract syntactic input specifications for sentence realisation can be represented as labelled bi-lexical dependencies or typed predicate-argument structures. Our generation method captures the mapping between semantic representations and surface forms by linearising a set of dependencies directly, rather than via the application of grammar rules as in more traditional chart-style or unification-based generators. In contrast to conventional n-gram language models over surface word forms, we exploit structural information and various linguistic features inherent in the dependency representations to constrain the generation space and improve the generation quality. A series of experiments shows that dependency-based n-gram models generalise well to different languages (English and Chinese) and representations (LFG and CoNLL). Compared with state-of-the-art generation systems, our general-purpose sentence realiser is highly competitive with the added advantages of being simple, fast, robust and accurate.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 17, Issue 4, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page