Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

The Social Origins of Language

By Daniel Dor

Presents a new theoretical framework for the origins of human language and sets key issues in language evolution in their wider context within biological and cultural evolution


New from Cambridge University Press!

ad

Preposition Placement in English: A Usage-Based Approach

By Thomas Hoffmann

This is the first study that empirically investigates preposition placement across all clause types. The study compares first-language (British English) and second-language (Kenyan English) data and will therefore appeal to readers interested in world Englishes. Over 100 authentic corpus examples are discussed in the text, which will appeal to those who want to see 'real data'


New from Brill!

ad

Free Access 4 You

Free access to several Brill linguistics journals, such as Journal of Jewish Languages, Language Dynamics and Change, and Brill’s Annual of Afroasiatic Languages and Linguistics.


Academic Paper


Title: Dependency-based n-gram models for general purpose sentence realisation
Author: Yuqing Guo
Institution: Toshiba (China) Research and Development Center
Author: Haifeng Wang
Institution: Baidu
Author: Josef Van Genabith
Email: click here to access email
Institution: Dublin City University
Linguistic Field: Computational Linguistics; Semantics; Syntax
Subject Language: Chinese, Mandarin
English
Abstract: This paper presents a general-purpose, wide-coverage, probabilistic sentence generator based on dependency n-gram models. This is particularly interesting as many semantic or abstract syntactic input specifications for sentence realisation can be represented as labelled bi-lexical dependencies or typed predicate-argument structures. Our generation method captures the mapping between semantic representations and surface forms by linearising a set of dependencies directly, rather than via the application of grammar rules as in more traditional chart-style or unification-based generators. In contrast to conventional n-gram language models over surface word forms, we exploit structural information and various linguistic features inherent in the dependency representations to constrain the generation space and improve the generation quality. A series of experiments shows that dependency-based n-gram models generalise well to different languages (English and Chinese) and representations (LFG and CoNLL). Compared with state-of-the-art generation systems, our general-purpose sentence realiser is highly competitive with the added advantages of being simple, fast, robust and accurate.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 17, Issue 4, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page