Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Language Planning as a Sociolinguistic Experiment

By: Ernst Jahr

Provides richly detailed insight into the uniqueness of the Norwegian language development. Marks the 200th anniversary of the birth of the Norwegian nation following centuries of Danish rule


New from Cambridge University Press!

ad

Acquiring Phonology: A Cross-Generational Case-Study

By Neil Smith

The study also highlights the constructs of current linguistic theory, arguing for distinctive features and the notion 'onset' and against some of the claims of Optimality Theory and Usage-based accounts.


New from Brill!

ad

Language Production and Interpretation: Linguistics meets Cognition

By Henk Zeevat

The importance of Henk Zeevat's new monograph cannot be overstated. [...] I recommend it to anyone who combines interests in language, logic, and computation [...]. David Beaver, University of Texas at Austin


Academic Paper


Title: Evaluating vector space models with canonical correlation analysis
Author: SamiVirpioja
Institution: Aalto University School of Science
Author: Mari-SannaPaukkeri
Institution: Aalto University School of Science
Author: AbhishekTripathi
Institution: University of Helsinki
Author: TiinaLindh-Knuutila
Institution: Aalto University School of Science
Author: KristaLagus
Institution: Aalto University School of Science
Linguistic Field: Computational Linguistics
Abstract: Vector space models are used in language processing applications for calculating semantic similarities of words or documents. The vector spaces are generated with feature extraction methods for text data. However, evaluation of the feature extraction methods may be difficult. Indirect evaluation in an application is often time-consuming and the results may not generalize to other applications, whereas direct evaluations that measure the amount of captured semantic information usually require human evaluators or annotated data sets. We propose a novel direct evaluation method based on canonical correlation analysis (CCA), the classical method for finding linear relationship between two data sets. In our setting, the two sets are parallel text documents in two languages. A good feature extraction method should provide representations that reflect the semantic content of the documents. Assuming that the underlying semantic content is independent of the language, we can study feature extraction methods that capture the content best by measuring dependence between the representations of a document and its translation. In the case of CCA, the applied measure of dependence is correlation. The evaluation method is based on unsupervised learning, it is language- and domain-independent, and it does not require additional resources besides a parallel corpus. In this paper, we demonstrate the evaluation method on a sentence-aligned parallel corpus. The method is validated by showing that the obtained results with bag-of-words representations are intuitive and agree well with the previous findings. Moreover, we examine the performance of the proposed evaluation method with indirect evaluation methods in simple sentence matching tasks, and a quantitative manual evaluation of word translations. The results of the proposed method correlate well with the results of the indirect and manual evaluations.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 18, Issue 3, which you can read on Cambridge's site .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page