Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Linguistic Diversity and Social Justice

By Ingrid Piller

Linguistic Diversity and Social Justice "prompts thinking about linguistic disadvantage as a form of structural disadvantage that needs to be recognized and taken seriously."


New from Cambridge University Press!

ad

Language Evolution: The Windows Approach

By Rudolf Botha

Language Evolution: The Windows Approach addresses the question: "How can we unravel the evolution of language, given that there is no direct evidence about it?"


The LINGUIST List is dedicated to providing information on language and language analysis, and to providing the discipline of linguistics with the infrastructure necessary to function in the digital world. LINGUIST is a free resource, run by linguistics students and faculty, and supported primarily by your donations. Please support LINGUIST List during the 2016 Fund Drive.

Academic Paper


Title: Recentred local profiles for authorship attribution
Author: Robert Layton
Institution: University of Sheffield
Author: Paul Watters
Homepage: http://www.comp.mq.edu.au/~pwatters
Institution: University of Sheffield
Author: Richard Dazeley
Institution: The University of Ballarat
Linguistic Field: Computational Linguistics; Text/Corpus Linguistics
Abstract: Authorship attribution methods aim to determine the author of a document, by using information gathered from a set of documents with known authors. One method of performing this task is to create profiles containing distinctive features known to be used by each author. In this paper, a new method of creating an author or document profile is presented that detects features considered distinctive, compared to normal language usage. This recentreing approach creates more accurate profiles than previous methods, as demonstrated empirically using a known corpus of authorship problems. This method, named recentred local profiles, determines authorship accurately using a simple ‘best matching author’ approach to classification, compared to other methods in the literature. The proposed method is shown to be more stable than related methods as parameter values change. Using a weighted voting scheme, recentred local profiles is shown to outperform other methods in authorship attribution, with an overall accuracy of 69.9% on the ad-hoc authorship attribution competition corpus, representing a significant improvement over related methods.

CUP AT LINGUIST

This article appears IN Natural Language Engineering Vol. 18, Issue 3, which you can READ on Cambridge's site .



Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page