Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Words in Time and Place: Exploring Language Through the Historical Thesaurus of the Oxford English Dictionary

By David Crystal

Offers a unique view of the English language and its development, and includes witty commentary and anecdotes along the way.


New from Cambridge University Press!

ad

The Indo-European Controversy: Facts and Fallacies in Historical Linguistics

By Asya Pereltsvaig and Martin W. Lewis

This book "asserts that the origin and spread of languages must be examined primarily through the time-tested techniques of linguistic analysis, rather than those of evolutionary biology" and "defends traditional practices in historical linguistics while remaining open to new techniques, including computational methods" and "will appeal to readers interested in world history and world geography."


Academic Paper


Title: Recentred local profiles for authorship attribution
Author: Robert Layton
Institution: University of Sheffield
Author: Paul Watters
Homepage: http://www.comp.mq.edu.au/~pwatters
Institution: University of Sheffield
Author: Richard Dazeley
Institution: The University of Ballarat
Linguistic Field: Computational Linguistics; Text/Corpus Linguistics
Abstract: Authorship attribution methods aim to determine the author of a document, by using information gathered from a set of documents with known authors. One method of performing this task is to create profiles containing distinctive features known to be used by each author. In this paper, a new method of creating an author or document profile is presented that detects features considered distinctive, compared to normal language usage. This recentreing approach creates more accurate profiles than previous methods, as demonstrated empirically using a known corpus of authorship problems. This method, named recentred local profiles, determines authorship accurately using a simple ‘best matching author’ approach to classification, compared to other methods in the literature. The proposed method is shown to be more stable than related methods as parameter values change. Using a weighted voting scheme, recentred local profiles is shown to outperform other methods in authorship attribution, with an overall accuracy of 69.9% on the ad-hoc authorship attribution competition corpus, representing a significant improvement over related methods.

CUP AT LINGUIST

This article appears IN Natural Language Engineering Vol. 18, Issue 3, which you can READ on Cambridge's site .



Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page