Featured Linguist!

Jost Gippert: Our Featured Linguist!

"Buenos dias", "buenas noches" -- this was the first words in a foreign language I heard in my life, as a three-year old boy growing up in developing post-war Western Germany, where the first gastarbeiters had arrived from Spain. Fascinated by the strange sounds, I tried to get to know some more languages, the only opportunity being TV courses of English and French -- there was no foreign language education for pre-teen school children in Germany yet in those days. Read more



Donate Now | Visit the Fund Drive Homepage

Amount Raised:

$34168

Still Needed:

$40832

Can anyone overtake Syntax in the Subfield Challenge ?

Grad School Challenge Leader: University of Washington


Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

What is English? And Why Should We Care?

By: Tim William Machan

To find some answers Tim Machan explores the language's present and past, and looks ahead to its futures among the one and a half billion people who speak it. His search is fascinating and important, for definitions of English have influenced education and law in many countries and helped shape the identities of those who live in them.


New from Cambridge University Press!

ad

Medical Writing in Early Modern English

Edited by Irma Taavitsainen and Paivi Pahta

This volume provides a new perspective on the evolution of the special language of medicine, based on the electronic corpus of Early Modern English Medical Texts, containing over two million words of medical writing from 1500 to 1700.


Academic Paper


Title: Part of speech tagging for Arabic
Author: Sandra Kübler
Institution: Indiana University Bloomington
Author: Emad Mohamed
Institution: Carnegie Mellon Qatar Campus
Linguistic Field: Computational Linguistics
Subject Language: Arabic, Standard
Abstract: This paper presents an investigation of part of speech (POS) tagging for Arabic as it occurs naturally, i.e. unvocalized text (without diacritics). We also do not assume any prior tokenization, although this was used previously as a basis for POS tagging. Arabic is a morphologically complex language, i.e. there is a high number of inflections per word; and the tagset is larger than the typical tagset for English. Both factors, the second one being partly dependent on the first, increase the number of word/tag combinations, for which the POS tagger needs to find estimates, and thus they contribute to data sparseness. We present a novel approach to Arabic POS tagging that does not require any pre-processing, such as segmentation or tokenization: whole word tagging. In this approach, the complete word is assigned a complex POS tag, which includes morphological information. A competing approach investigates the effect of segmentation and vocalization on POS tagging to alleviate data sparseness and ambiguity. In the segmentation-based approach, we first automatically segment words and then POS tags the segments. The complex tagset encompasses 993 POS tags, whereas the segment-based tagset encompasses only 139 tags. However, segments are also more ambiguous, thus there are more possible combinations of segment tags. In realistic situations, in which we have no information about segmentation or vocalization, whole word tagging reaches the highest accuracy of 94.74%. If gold standard segmentation or vocalization is available, including this information improves POS tagging accuracy. However, while our automatic segmentation and vocalization modules reach state-of-the-art performance, their performance is not reliable enough for POS tagging and actually impairs POS tagging performance. Finally, we investigate whether a reduction of the complex tagset to the Extra-Reduced Tagset as suggested by Habash and Rambow (Habash, N., and Rambow, O. 2005. Arabic tokenization, part-of-speech tagging and morphological disambiguation in one fell swoop. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL), Ann Arbor, MI, USA, pp. 573–80) will alleviate the data sparseness problem. While the POS tagging accuracy increases due to the smaller tagset, a closer look shows that using a complex tagset for POS tagging and then converting the resulting annotation to the smaller tagset results in a higher accuracy than tagging using the smaller tagset directly.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 18, Issue 4, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page