Featured Linguist!

Jost Gippert: Our Featured Linguist!

"Buenos dias", "buenas noches" -- this was the first words in a foreign language I heard in my life, as a three-year old boy growing up in developing post-war Western Germany, where the first gastarbeiters had arrived from Spain. Fascinated by the strange sounds, I tried to get to know some more languages, the only opportunity being TV courses of English and French -- there was no foreign language education for pre-teen school children in Germany yet in those days. Read more



Donate Now | Visit the Fund Drive Homepage

Amount Raised:

$34068

Still Needed:

$40932

Can anyone overtake Syntax in the Subfield Challenge ?

Grad School Challenge Leader: University of Washington


Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

What is English? And Why Should We Care?

By: Tim William Machan

To find some answers Tim Machan explores the language's present and past, and looks ahead to its futures among the one and a half billion people who speak it. His search is fascinating and important, for definitions of English have influenced education and law in many countries and helped shape the identities of those who live in them.


New from Cambridge University Press!

ad

Medical Writing in Early Modern English

Edited by Irma Taavitsainen and Paivi Pahta

This volume provides a new perspective on the evolution of the special language of medicine, based on the electronic corpus of Early Modern English Medical Texts, containing over two million words of medical writing from 1500 to 1700.


Academic Paper


Title: Statistical Translation After Source Reordering: Oracles, Context-Aware Models, and Empirical Analysis
Author: Maxim Khalilov
Email: click here to access email
Homepage: http://staff.science.uva.nl/~khalilov/index.html
Institution: University of Amsterdam
Author: Khalil Sima'an
Institution: University of Amsterdam
Linguistic Field: Computational Linguistics
Abstract: In source reordering the order of the source words is permuted to minimize word order differences with the target sentence and then fed to a translation model. Earlier work highlights the benefits of resolving long-distance reorderings as a pre-processing step to standard phrase-based models. However, the potential performance improvement of source reordering and its impact on the components of the subsequent translation model remain unexplored. In this paper we study both aspects of source reordering. We set up idealized source reordering (oracle) models with/without syntax and present our own syntax-driven model of source reordering. The latter is a statistical model of inversion transduction grammar (ITG)-like tree transductions manipulating a syntactic parse and working with novel conditional reordering parameters. Having set up the models, we report translation experiments showing significant improvement on three language pairs, and contribute an extensive analysis of the impact of source reordering (both oracle and model) on the translation model regarding the quality of its input, phrase-table, and output. Our experiments show that oracle source reordering has untapped potential in improving translation system output. Besides solving difficult reorderings, we find that source reordering creates more monotone parallel training data at the back-end, leading to significantly larger phrase tables with higher coverage of phrase types in unseen data. Unfortunately, this nice property does not carry over to tree-constrained source reordering. Our analysis shows that, from the string-level perspective, tree-constrained reordering might selectively permute word order, leading to larger phrase tables but without increase in phrase coverage in unseen data.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 18, Issue 4, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page