Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Raciolinguistics

Edited by H. Samy Alim, John R. Rickford, and Arnetha F. Ball

Raciolinguistics "Brings together a critical mass of scholars to form a new field dedicated to theorizing and analyzing language and race together."


New from Cambridge University Press!

ad

Sociolinguistics from the Periphery

By Sari Pietikäinen, FinlandAlexandra Jaffe, Long BeachHelen Kelly-Holmes, and Nikolas Coupland

Sociolinguistics from the Periphery "presents a fascinating book about change: shifting political, economic and cultural conditions; ephemeral, sometimes even seasonal, multilingualism; and altered imaginaries for minority and indigenous languages and their users."


Academic Paper


Title: Automated unsupervised authorship analysis using evidence accumulation clustering
Author: Robert Layton
Institution: University of Sheffield
Author: Paul Watters
Homepage: http://www.comp.mq.edu.au/~pwatters
Institution: University of Sheffield
Author: Richard Dazeley
Institution: The University of Ballarat
Linguistic Field: Computational Linguistics; Text/Corpus Linguistics
Abstract: Authorship Analysis aims to extract information about the authorship of documents from features within those documents. Typically, this is performed as a classification task with the aim of identifying the author of a document, given a set of documents of known authorship. Alternatively, unsupervised methods have been developed primarily as visualisation tools to assist the manual discovery of clusters of authorship within a corpus by analysts. However, there is a need in many fields for more sophisticated unsupervised methods to automate the discovery, profiling and organisation of related information through clustering of documents by authorship. An automated and unsupervised methodology for clustering documents by authorship is proposed in this paper. The methodology is named NUANCE, for n-gram Unsupervised Automated Natural Cluster Ensemble. Testing indicates that the derived clusters have a strong correlation to the true authorship of unseen documents.

CUP AT LINGUIST

This article appears IN Natural Language Engineering Vol. 19, Issue 1.

Return to TOC.

Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page