Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Words in Time and Place: Exploring Language Through the Historical Thesaurus of the Oxford English Dictionary

By David Crystal

Offers a unique view of the English language and its development, and includes witty commentary and anecdotes along the way.


New from Cambridge University Press!

ad

Thesaurus of English Words and Phrases

By Peter Mark Roget

This book "supplies a vocabulary of English words and idiomatic phrases 'arranged … according to the ideas which they express'. The thesaurus, continually expanded and updated, has always remained in print, but this reissued first edition shows the impressive breadth of Roget's own knowledge and interests."


New from Brill!

ad

The Brill Dictionary of Ancient Greek

By Franco Montanari

Coming soon: The Brill Dictionary of Ancient Greek by Franco Montanari is the most comprehensive dictionary for Ancient Greek to English for the 21st Century. Order your copy now!


Academic Paper


Title: A unified alignment algorithm for bilingual data
Author: Christoph Tillmann
Institution: IBM T.J. Watson Research Center
Author: Sanjika Hewavitharana
Institution: Carnegie Mellon University
Linguistic Field: Computational Linguistics
Abstract: The paper presents a novel unified algorithm for aligning sentences with their translations in bilingual data. With the help of ideas from a stack-based dynamic programming decoder for speech recognition (Ney 1984), the search is parametrized in a novel way such that the unified algorithm can be used on various types of data that have been previously handled by separate implementations: the extracted text chunk pairs can be either sub-sentential pairs, one-to-one, or many-to-many sentence-level pairs. The one-stage search algorithm is carried out in a single run over the data. Its memory requirements are independent of the length of the source document, and it is applicable to sentence-level parallel as well as comparable data. With the help of a unified beam-search candidate pruning, the algorithm is very efficient: it avoids any document-level pre-filtering and uses less restrictive sentence-level filtering. Results are presented on a Russian–English, a Spanish–English, and an Arabic–English extraction task. Based on simple word-based scoring features, text chunk pairs are extracted out of several trillion candidates, where the search is carried out on 300 processors in parallel.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 19, Issue 1, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page