Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info

New from Oxford University Press!


It's Been Said Before

By Orin Hargraves

It's Been Said Before "examines why certain phrases become clichés and why they should be avoided -- or why they still have life left in them."

New from Cambridge University Press!


Sounds Fascinating

By J. C. Wells

How do you pronounce biopic, synod, and Breughel? - and why? Do our cake and archaic sound the same? Where does the stress go in stalagmite? What's odd about the word epergne? As a finale, the author writes a letter to his 16-year-old self.

Academic Paper

Title: Linguistic Knowledge in Statistical Phrase-based Word Alignment
Linguistic Field: Computational Linguistics; Text/Corpus Linguistics
Abstract: In this paper, a novel phrase alignment strategy combining linguistic knowledge and co-occurrence measures extracted from bilingual corpora is presented. The algorithm is mainly divided into four steps, namely phrase selection and classification, phrase alignment, one-to-one word alignment and post-processing. The first stage selects a linguistically-derived set of phrases that convey a unified meaning during translation and are therefore aligned together in parallel texts. These phrases include verb phrases, idiomatic expressions and date expressions. During the second stage, very high precision links between these selected phrases for both languages are produced. The third step performs a statistical word alignment using association measures and link probabilities with the remaining unaligned tokens, and finally the fourth stage takes final decisions on unaligned tokens based on linguistic knowledge. Experiments are reported for an English-Spanish parallel corpus, with a detailed description of the evaluation measure and manual reference used. Results show that phrase co-occurrence measures convey a complementary information to word co-occurrences and a stronger evidence of a correct alignment, successfully introducing linguistic knowledge in a statistical word alignment scheme. Precision, Recall and Alignment Error Rate (AER) results are presented, outperforming state-of-the-art alignment algorithms.


This article appears IN Natural Language Engineering Vol. 12, Issue 1.

Return to TOC.

Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page