Publishing Partner: Cambridge University Press CUP Extra Publisher Login

New from Cambridge University Press!


Revitalizing Endangered Languages

Edited by Justyna Olko & Julia Sallabank

Revitalizing Endangered Languages "This guidebook provides ideas and strategies, as well as some background, to help with the effective revitalization of endangered languages. It covers a broad scope of themes including effective planning, benefits, wellbeing, economic aspects, attitudes and ideologies."

We Have a New Site!

With the help of your donations we have been making good progress on designing and launching our new website! Check it out at!
***We are still in our beta stages for the new site--if you have any feedback, be sure to let us know at***

Academic Paper

Title: Developing, Analyzing and Sharing Multivariate Datasets: Individual Differences in L2 Learning Revisited
Author: Kazuya Saito
Author: Konstantinos Macmillan
Author: Tran Mai
Author: Yui Suzukida
Author: Hui Sun
Author: Viktoria Magne
Author: Meltem Ilkan
Author: Akira Murakami
Linguistic Field: Applied Linguistics
Subject Language: English
Abstract: Following the trends established in psychology and emerging in L2 research, we explain our support for an Open Science approach in this paper (i.e., developing, analyzing and sharing datasets) as a way to answer controversial and complex questions in applied linguistics. We illustrate this with a focus on a frequently debated question, what underlies individual differences in the dynamic system of post-pubertal L2 speech learning? We provide a detailed description of our dataset which consists of spontaneous speech samples, elicited from 110 late L2 speakers in the UK with diverse linguistic, experiential and sociopsychological backgrounds, rated by ten L1 English listeners for comprehensibility and nativelikeness. We explain how we examined the source of individual differences by linking different levels of L2 speech performance to a range of learner-extrinsic and intrinsic variables related to first language backgrounds, age, experience, motivation, awareness, and attitudes using a series of factor and Bayesian mixed-effects ordinal regression analyses. We conclude with a range of suggestions for the fields of applied linguistics and SLA, including the use of Bayesian methods in analyzing multivariate, multifactorial data of this kind, and advocating for publicly available datasets. In keeping with recommendations for increasing openness of the field, we invite readers to rethink and redo our analyses and interpretations from multiple angles by making our dataset and coding publicly available as part of our 40th anniversary ARAL article.


This article appears IN Annual Review of Applied Linguistics Vol. 40, Issue , which you can READ on Cambridge's site .

Return to TOC.

View the full article for free in the current issue of
Cambridge Extra Magazine!
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page