Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Speaking American: A History of English in the United States

By Richard W. Bailey

"Takes a novel approach to the history of American English by focusing on hotbeds of linguistic activity throughout American history."


New from Cambridge University Press!

ad

Language, Literacy, and Technology

By Richard Kern

"In this book, Richard Kern explores how technology matters to language and the ways in which we use it. Kern reveals how material, social and individual resources interact in the design of textual meaning, and how that interaction plays out across contexts of communication, different situations of technological mediation, and different moments in time."


Academic Paper


Title: Learning Morphology with Morfette
Paper URL: http://www.lrec-conf.org/proceedings/lrec2008/pdf/594_paper.pdf
Author: Grzegorz ChrupaƂa
Email: click here TO access email
Homepage: http://www.lsv.uni-saarland.de/personalPages/gchrupala/index.html
Institution: Saarland University
Author: Georgiana Dinu
Email: click here TO access email
Institution: Saarland University
Author: Josef Van Genabith
Email: click here TO access email
Institution: Dublin City University
Linguistic Field: Computational Linguistics
Abstract: Morfette is a modular, data-driven, probabilistic system which learns to perform joint morphological tagging and lemmatization from morphologically annotated corpora. The system is composed of two learning modules which are trained to predict morphological tags and lemmas using the Maximum Entropy classifier. The third module dynamically combines the predictions of the Maximum-Entropy models and outputs a probability distribution over tag-lemma pair sequences. The lemmatization module exploits the idea of recasting lemmatization as a classification task by using class labels which encode mappings from word forms to lemmas. Experimental evaluation results and error analysis on three morphologically rich languages show that the system achieves high accuracy with no language-specific feature engineering or additional resources.
Type: Individual Paper
Status: Completed
Venue: LREC 2008
URL: http://www.lrec-conf.org/proceedings/lrec2008/pdf/594_paper.pdf


Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page