Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Words in Time and Place: Exploring Language Through the Historical Thesaurus of the Oxford English Dictionary

By David Crystal

Offers a unique view of the English language and its development, and includes witty commentary and anecdotes along the way.


New from Cambridge University Press!

ad

The Indo-European Controversy: Facts and Fallacies in Historical Linguistics

By Asya Pereltsvaig and Martin W. Lewis

This book "asserts that the origin and spread of languages must be examined primarily through the time-tested techniques of linguistic analysis, rather than those of evolutionary biology" and "defends traditional practices in historical linguistics while remaining open to new techniques, including computational methods" and "will appeal to readers interested in world history and world geography."


Academic Paper


Title: Models, forests, and trees of York English: Was/were variation as a case study for statistical practice
Author: Sali A Tagliamonte
Email: click here TO access email
Institution: University of Toronto
Author: Harald R. Baayen
Institution: Universität Tübingen
Linguistic Field: Computational Linguistics; Historical Linguistics; Morphology
Subject Language: English
Abstract: What is the explanation for vigorous variation between was and were in plural existential constructions, and what is the optimal tool for analyzing it? Previous studies of this phenomenon have used the variable rule program, a generalized linear model; however, recent developments in statistics have introduced new tools, including mixed-effects models, random forests, and conditional inference trees that may open additional possibilities for data exploration, analysis, and interpretation. In a step-by-step demonstration, we show how this well-known variable benefits from these complementary techniques. Mixed-effects models provide a principled way of assessing the importance of random-effect factors such as the individuals in the sample. Random forests provide information about the importance of predictors, whether factorial or continuous, and do so also for unbalanced designs with high multicollinearity, cases for which the family of linear models is less appropriate. Conditional inference trees straightforwardly visualize how multiple predictors operate in tandem. Taken together, the results confirm that polarity, distance from verb to plural element, and the nature of the DP are significant predictors. Ongoing linguistic change and social reallocation via morphologization are operational. Furthermore, the results make predictions that can be tested in future research. We conclude that variationist research can be substantially enriched by an expanded tool kit.

CUP AT LINGUIST

This article appears IN Language Variation and Change Vol. 24, Issue 2, which you can READ on Cambridge's site or on LINGUIST .



Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page